Liste de nos publications :

Mécanismes de chauffage des magnétosomes par application d’un champ oscillant :

Heat Production by Bacterial Magnetosomes Exposed to an Oscillating Magnetic Field, E. Alphandéry, S. Faure, L. Raison, E. Duguet, P. A. Howse, and D. A. Bazylinski, Journal of Physical Chemistry C, Vol. 115, P. 18-22 (2011).

Lien 1: http://pubs.acs.org/doi/abs/10.1021/jp104580t

Lien 2: https://hal-univ-diderot.archives-ouvertes.fr/hal-00559506/document

Dopage des magnetosomes avec du cobalt afin d’améliorer leurs propriétés de chauffage  :

Chains of Cobalt Doped Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in AMF hyperthermia, E. Alphandery, C. Carvallo, N. Menguy, I. Chebbi, Journal of Physical Chemistry C, Vol. 115, P. 11920-11924 (2011).

Lien 1: http://pubs.acs.org/doi/abs/10.1021/jp201274g

Lien 2: https://hal-univ-diderot.archives-ouvertes.fr/hal-00643500/document

Mécanisme de stimulation de la production bactérienne par ajout d’ajout chélatant :

The effect of iron-chelating agents on Magnetospirillum magneticum strain AMB-1: stimulated growth and magnetosome production and improved magnetosome heating properties, E. Alphandéry, M. Amor, F. Guyot & I. Chebbi, Applied Microbiology and Biotechnology, Vol. 96, P. 663-670 (2012).

Lien 1: https://link.springer.com/article/10.1007%2Fs00253-012-4199-5

Lien 2: https://www.archives-ouvertes.fr/IMPMC/hal-01547086v1

Traitement du cancer du sein par hyperthermie magnétique à l’aide des magnetosomes :

Preparation of chains of magnetosomes, isolated from Magnetospirillum magneticum strain AMB-1 magnetotactic bacteria, yielding efficient treatment of tumors using magnetic hyperthermia, E. Alphandéry, F. Guyot, I. Chebbi, International Journal of Pharmaceutics, Vol. 434, P. 444-452 (2012).

Lien 1: http://www.sciencedirect.com/science/article/pii/S0378517312006126?via%3Dihub

Lien 2: http://hal.upmc.fr/hal-01547081

Chains of Magnetosomes Extracted from AMB-1 Magnetotactic Bacteria for Application in Alternative Magnetic Field Cancer Therapy, E. Alphandéry, S. Faure, O. Seksek, F. Guyot, and I. Chebbi, ACSNano, Vol. 5, P. 6279-6296 (2011).

Lien 1: http://pubs.acs.org/doi/abs/10.1021/nn201290k

Lien 2: http://pubs.acs.org/doi/abs/10.1021/nn201290k

Utilisation des magnetosomes comme sonde magnétique de détection :

Different signatures between chemically and biologically synthesized nanoparticles in a magnetic sensor: A new technology for multiparametric detection, E. Alphandérya, L. Lijeour, Y. Lalatonne, L. Motte, Sensors and Actuators B: Chemical, Vol. 147, P. 786-790 (2010).

Lien 1: http://www.sciencedirect.com/science/article/pii/S092540051000328X

Lien 2: https://hal.archives-ouvertes.fr/hal-00704892/document

Revue portant sur le développement des différents nano-médicaments :

Cancer therapy using nanoformulated substances: scientific, regulatory and financial aspects, E. Alphandéry, P. Grand-Dewyse, R. Le Fèvre, C. Mandawala, M. Durand-Dubief, Expert Review of Anticancer Therapy, Vol 15, P. 1233-1255 (2015).

Lien 1: http://www.tandfonline.com/doi/abs/10.1586/14737140.2015.1086647?journalCode=iery20

Lien 2: http://hal.upmc.fr/hal-01547085

Préparation et propriétés des minéraux de magnétosomes apyrogènes revêtus :

Biocompatible and stable magnetosome minerals coated with poly-L-lysine, citric acid, oleic acid, and carboxy-methyl-dextran for application in the magnetic hyperthermia treatment of tumors, C. Mandawala, I. Chebbi, M. Durand-Dubief, R. Le Fèvre, Y. Hamdous, F. Guyot, E. Alphandéry, Journals of Materials Chemistry B, Vol. 5, P. 7644-7660 (2017).

Lien 1: http://pubs.rsc.org/en/content/articlelanding/2017/tb/c6tb03248f#!divAbstract

Lien 2: https://www.archives-ouvertes.fr/IMPMC/hal-01586778v1

Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG‑2 and GL‑261 glioma cells in the presence of an alternating magnetic field, Y. Hamdous, I. Chebbi, Ch. Mandawala, R. Le Fèvre, F. Guyot, O. Seksek, and E. Alphandéry, Journal of nanobiotechnology, V. 15:74 (2017).

Lien: https://jnanobiotechnology.biomedcentral.com/articles/10.1186/s12951-017-0293-2

Traitement des glioblastomes U87-Luc intracraniens :

Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field, E. Alphandéry, A. Idbaih, C. Adam, J-Y. Delattre, C. Schmitt, F. Guyot, I. Chebbi, Journal of Controlled Release, V. 262, P. 259-272 (2017).

Lien 1: http://www.sciencedirect.com/science/article/pii/S0168365917307290?via%3Dihub

Lien 2: https://hal-mnhn.archives-ouvertes.fr/hal-01565231v1

Development of non-pyrogenic magnetosome minerals coated with poly-l-lysine leading to full disappearance of intracranial U87-Luc glioblastoma in 100% of treated mice using magnetic hyperthermia, E. Alphandéry, A. Idbaih, C. Adam, J-Y. Delattre, C. Schmitt, F. Guyot, I. Chebbi, Biomaterials, V. 141, P. 210-222 (2017).

Lien 1: https://www.ncbi.nlm.nih.gov/pubmed/28689117

Lien 2: https://hal-mnhn.archives-ouvertes.fr/hal-01545933v1

Traitement des glioblastomes GL-261 sous-cutanés :

Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma, Raphaël Le Fèvre, Mickaël Durand-Dubief, Imène Chebbi, Chalani Mandawala, France Lagroix, Jean-Pierre Valet, Ahmed Idbaih, Clovis Adam, Jean-Yves Delattre, Charlotte Schmitt, Caroline Maake, François Guyot, Edouard Alphandéry, Theranostics, V. 7, P. 4618-4631 (2017).

Lien 1: http://www.thno.org/v07p4618.htm

Lien 2 : http://www.thno.org/v07p4618.pdf

Développement d’une sonde fluorescente nanométrique de détection de température :

A Nanoprobe Synthesized by Magnetotactic Bacteria, Detecting Fluorescence Variations under Dissociation of Rhodamine B from Magnetosomes following Temperature, pH Changes, or the Application of Radiations. Edouard Alphandery, Darine Abi-Haidar, Olivier Seksek, Maxime Thoreau, Alain Trautmann, Nadege Bercovici, Florence Gazeau, François Guyot, Imène Chebbi. ACS applied materials and interfaces. DOI: 10.1021/acsami.7b09720 (2017)

Lien 1: http://pubs.acs.org/doi/abs/10.1021/acsami.7b09720

Lien 2: http://hal.archives-ouvertes.fr/hal-01123077

Revues portant sur l’utilisation médicale des magnétosomes :

Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumurs : A review. Edouard Alphandéry, Imène Chebbi, François Guyot, Mickael Durand-Dubief. International journal of hyperthermia, V. 29, P. 801-809 (2013).

Lien 1: http://www.tandfonline.com/doi/pdf/10.3109/02656736.2013.821527

Application of magnetosomes synthesized by magnetotactic bacteria in medicine. Edouard Alphandéry. Frontiers in Bioengineering and biotechnology. V. 2, article 5 (2014).

Lien: http://journal.frontiersin.org/article/10.3389/fbioe.2014.00005/pdf

Revue portant sur les thermothérapies utilisées pour le traitement du cancer du sein :

Perspective of breast cancer thermotherapies. Edouard Alphandéry. Journal of cancer, V. 5, 472 (2014).

Lien 1: www.jcancer.org/v05p0472.htm

Lien 2 : www.jcancer.org/v05p0472.pdf

Les isotopes du fer dans les magnétosomes :

Mass-dependent and –independent signature of Fe isotopes in magnetotactic bacteria. Matthieu Amor, Vincent Busigny, Pascale Louvat, Alexandre Gélabert, Pierre Cartigny, Mickael Durand-Dubief, Georges Ona-Nguema, Edouard Alphandéry, Imène Chebbi, François Guyot. Science. Vol. 352, P.705-708 (2016).

Lien: http://science.sciencemag.org/content/352/6286/705

Chemical signature of magnetotactic bacteria. Matthieu Amor, Vincent Busigny, Mickael Durand-Dubief, Georges Ona-Nguema, Alexandre Gélabert, Edouard Alphandéry, Nicolas Menguy, Marc Benedeti, Imène Chebbi, François Guyot. Proceedings of the National Academy of Science. V. 112, P. 1699-1703 (2015).

Lien: http://europepmc.org/articles/PMC4330721